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Abstract. Ballistic electron transpofi in resonant quanNm-wire SrmcNres (double point contacts 
in "ies) is investigated taking into account charge build-up effects. It is shown th5 when the 
resonant condition holds 0.e. when the Pemi energy of incoming electrons coincides with 
the energy of the quasibound state), the charge stored in the structure may lead to a bistable 
behaviour of the system. lo the linear-response approximation, when the current Bowing through 
the ~VucNre is described by the two-tennhal hdauw formula, a closed non-linear equation 
is derived relaling the transmitted current to the energy of the resonant level and the width of 
the Rsonance r. It is shown that the condition that must be satisfied for bistability to OCCUT 

is e 3 V / n C r z  2 I, where V is the applied bias and C is the capacitance of the s ~ u c m  
The dependence of the width of the resonant level and its position on the device geomeuy 
is investigated using the match-mode technique for calculations of the electron transmission 
- f i c i a L  The width of the resonance is shown to increase with increasing length of the 
contacts, but the position of the resonant level (in units of the propagation threshold energy 
in the contact regions) is insensitive to the length of the contacts as well ag to the lengths of 
the side anns. On the basis of the results obtained, the bistability in the I-V, chancteristic 
(current-gate voltage) is studied for structures of realistic dimensions. 

1. Introduction 

Following advances in fabrication and improvement of vertical double-barrier resonant 
tunnelling DBRn semiconductor structures, where electrons move in the direction 
perpendicular to the plane of confinement, the new generation of nanometre lateral structures 
has emerged, where a two-dimensional elecaon gas (2DEG) defined on the top of a 
heterostructure can be further confined to one or zero dimension by means of a split- 
gate technique (see. for example, [l]). Modem submicrometre lithographic technology 
makes it possible to fabricate structures with dimensions smaller than the electron phase 
coherence length, where the electron transport is fully ballistic. In this case electrons 
propagate coherently over the entire device like light through a waveguide and the device 
conductance is determined by the potential induced in the ZDEG by the split gate. When 
the Fermi wavelength of electrons h~ is of the order of the width of the structure (typical 
values of AF currently achieved in real GAS-AlGaAs structures lie in the range of 100- 
30 tun [2]), the confinement in the direction perpendicular to the electron motion causes a 
variety of novel effects. Among them we mention only the following two: the quantized 
conductance of a quantum point contact (Qx) resulting from changes in the number of 
1D subbands contributing to the current [3]. and the existence of quasibound states below 

t On leave of absence f" the Bogolyubov InstiNte for Theoretical Physics, Academy of Sciences of the Ukraine. 
Kiev, 252143. ulaaine. 
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the propagation threshold at the intersection of quantum wires which are unable to trap 
classical particles [4]. These effects are exploited in a resonant quantum-wire structure 
(RQWS) consisting of two narrow constrictions (QPCs) defined in the wide wire [5-71, or in 
the 2DEC [SI, see figure 1. Weishaar et nl [61 have predicted that this device may exhibit 
a negative daerential resistance up to approximately 60 K with a peak-to-valley ratio of 
over 801 at zem temperature. The operation of the device is quite similar to that of the 
double-barrier resonant tunnelling diode. Indeed, when the Fermi energy EF of incoming 
electrons in the left wide wire (emitter) is less than the propagation threshold in the narrow 
constriction, E‘, there are no propagating modes in the narrow constriction, and the total 
transmission is nearly zero. But when the Fermi energy, still below Eh, is tuned to the 
energy of the bound state which resides in the cavity, resonant transport to the right wide 
wire (coUector) based on evanescent mode coupling occurs. 

Figurr 1. Schematic view of the resonant q ” m  waveguide s!”. Regions 1 and 5 are 
the emitter and collector wires: regions 2 and 4 are tix narrow wires (constrictions): region 3 
is the cavity. Dashed lines represent the changes of the device geometry due to the varying of 
the gate voltage. 

Many important features of electron transport in submicrometre structures are associated 
with non-linear phenomena caused by the spacecharge formation inside the structure. The 
above phenomena have been extensively studied in vertical structures, both theoretically [9- 
161, and experimentally [17]. It has been demonstrated that the charge build-up in the well 
of DBRT structures may shift the resonance energy and the potential distribution through the 
system and eventually may lead to bistability and hysteresis in the I-V characteristic. The 
origin of the two different states in the I-V characteristic stems from the difference in the 
ways by which one can align the Fermi sea in the emitter and the resonant level in the well 
of the DBRT structure. More precisely, if the resonant level approaches the Fermi energy 
from above (by increasing the bias voltage), negative electrostatic feedback occurs, since the 
lowering of the resonant level is compensated by its upward shift due to the charge build-up 
in the well. As a result, resonant transmission OCCUTS at a bias higher than that in the case 
when no space-charge formation is taken into account. In contrast, if the resonant level 
approaches the bottom of the conduction band from below, positive electrostatic feedback 
takes place. Therefore, two different values of the transmitted current correspond to the 
same external bias, depending on whether one reaches resonant transmission by increasing 
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the bias voltage (from the state with a filled well) or by decreasing it (from the state with 
an empty well). 

A number of experimental [18,19] and theoretical [20,2l] studies deal with charging 
effects in lateral semiconductor structures. In particular, in quantum-dot structures ‘Coulomb 
blockade’ effects [22] manifest themselves in the so-called Coulomb oscillations in the 
conductance and in the Coulomb staircase in the I-V characteristic of quantum-dot 
structures. On the other hand, the spectral and transport properties of RQWss have until 
now been studied only in the linear regime, where effects of the space-charge formation 
have not been taken into account. The main aim of the present study is to investigate the 
charging effects in the RQWS and its influence on the device conductance. 

The paper is organized as follows. In section 2 resonant transmission of electrons in 
RQWSs is studied taking into account the charging of the structure. The current flowing 
through the device is related to the characteristics of the structure: the energy of the 
quasibound level and the escape rate of the electron from the quasibound state. These 
characteristics are calculated in section 3 on the basis of a match-mode technique. The 
results obtained in sections 2 and 3 are used in section 4 for the calculation of the current- 
gate voltage characteristic of an RQWS of realistic dimensionality. A brief summary of the 
work is given in section 5. 

2. Effects of the space-charge formation on resonant electron transport 

In the limit of sufficiently low temperahxes in the linear-response regime, when incoming 
and outgoing electrons are characterized by the equilibrium Fermi distribution and their 
electrochemical potentials, p!cr), deviate only slightly, the current flowing through the 2D 
lateral structure is given by the two-terminal Landauer formula [23], and is determined by 
the total transmission T ( E )  evaluated at the Fermi energy EF 

(1) 

where V = (p~ - pr)/e is the voltage drop across the device. As was mentioned in the 
introduction, operation of the RQWS exploits the resonance transport regime, thus, in this 
section we shall focus on the electron transmission through the quasibound state. 

For energies close to that of the quasibound state the transmission probability is 
Lorenzian and given by the Breit-Wigner formula [24] 

where E is the energy of the incident electrons and E,  is the energy of the quasibound 
state (both are measured from the bottom of the conduction band of the emitter), rlg/fi 

is the escape rate of electrons from the quasibound state to the left (right) reservoir, and 
r = r, + r, is the total width of the transmission peak. Note that equation (2) is valid 
when the difference E -E,  is small in comparison to the distance to the nearest quasibound 
state or to the region of the continuous spectrum, and the use of the Landauer formula 
for the description of resonant transmission is justified when the imbalance of chemical 
potentials of right and left reservoirs is small in comparison with the characteristic changes 
of transmission coefficients, i.e. eV << r [=I. 
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When charging effects are disregarded, the energy of the quasibound state Er = E: 
is determined by the device geometry (calculation of E: and r is the subject of the next 
section). In the vicinity of the resonance, the charge stored inside the device increases by 
several orders of magnitude in comparison with its off-resonant value (see below), thereby 
shifting the bottom of the conduction band in the cavity. To take into account the charging 
effects, we shall follow Sheard and Toombs [lo] who used simple electrostatic considerations 
in their treatment of the bistability effects in the vertical DBRT structures. Thus, the shift of 
the conduction band in the cavity due to the excess charge Q is taken to be equal to the 
electrostatic energy associated with the charging of the structure 

eQ A E = -  
C (3) 

where C is the capacitance of the cavity (region 3 in figure 1). The energy of the quasibound 
level is then 

where we have dropped the term -$eV that describes the shift of the bottom of the 
conduction band in the cavity due to the applied voltage, since eV < E," in the linear- 
response regime considered here. One can show that this approach is equivalent to the 
Hartree approximation used by Davydov and Ermakov (91 for the description of the space- 
charge formation in the DBRT structures. 

The charge Q stored in the dot is related to the current flowing through the structure by 
I = (rr/ii)Q. Hereafter we shall restrict ourselves to the case of a symmetrical structure 
when under resonance conditions, E = Er, full transmission, T = 1, is achieved and, 
therefore, charging effects are most pronounced. In this case, i"t = r, = r / Z  and the 
excess charge appears in the form 

2fr 
Q = -I. r ( 5 )  

Combining (I)+) we find a closed non-linear equation for y = I/I,, 

where I,, = 2e2V/h  is the resonant current, E = ( E -  E:) / (r /Z)  and 01 = 4e3V/(CnTZ).  
Note that a similar cubic equation for the transmission coefficient has been obtained by 

Davydov and Ermakov 191 for the caSe of non-linear resonant tunnelling of high-density 
electrons through a system of two identical barriers, and by Malysheva and Onipko 11.51 
who used the tight-binding Hamiltonian including the Hubbard electron-electron interaction 
to study an electron tunnelling through a single guest molecule in a ID molecular chain. 

Simple analysis shows that equation (6) has three roots when 01 2 $. This condition 
determines the region of bistable behaviour of the system which, with regards to equation (3). 
can be rewritten in the form 

AE,, 3 -> -  
r/2 " 2  
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where AE,, = eQ-/C, Qm = 2e2V/(nr) .  In other words, the maximum shift of 
the resonant level, AE-, caused by the excess charge stored in the cavity must exceed 
roughly the width of the resonance. If the condition (7) holds, the energy region where one 
can expect bistability behaviour is 

E - E ; - -  eQ- 
C '  

Conditions similar to (7) and (8)  for the case of 3D electron transport in DBRT structures 
were obtained for the first time by Rahman and Davies 1141, and Sheard and Toombs [lo]. 

Note that in ow estimate of the charging energy we neglected the exchange interaction, 
which, in contrast to the direct Coulomb interaction, lowers the conduction band in the cavity 
[11.16]. For the case of DBRT StIuCtures the contribution from this interaction is shown 
[I61 to he comparable with that from direct Coulomb interaction only when the maximum 
electron density in the well is relatively low, - IOi5 m-2. For higher densities (considered 
here, see below) the exchange electron correlation is unimportant for the conduction band 
renormalization. 

3. Escape rate of electrons and energy level of quasibound state 

In the preceding section it has been shown that the current flowing through the RQWs near 
resonance with charging effects accounted for, is determined (at fixed Fermi energy and 
applied bias) by the energy of the quasibound level E: and the escape rate of electrons 
from the quasibound level W / h ,  see equation (6). In this section we shall calculate these 
two parameters and study their dependence on the geometry of the structure. 

We shall use an idealized waveguide model, assuming the split gate to produce a hard- 
wall confinement and electron transport through the device to be fully ballistic. Then a 
solution of the time-independent Schrodinger equation in each uniform waveguide section 
@#, n = 1,. . . ,5  (see figure I), is given as a complete set of the orthonormal square- 
weU eigenfunctions (transverse modes). Consider incoming electrons with the energy 
EF = fi2kg/2m* propagating in the pth mode in the emitter lead. The wave functions 
in the outer regions 1 and 5 can be written in the form 

where k; = (n /wn) , / (kp . /n)Z - j z  is the longitudinal wave vector of the electron in the 
j t h  mode in each region n = 1,. . . , 5  and wn is the corresponding waveguide width; r/ 
and $' are the reflection and transmission amplitudes. Similar expressions for @" can be 
written down for regions 2 4  The integer part of the dimensionless wave vector kpw,/n 
determines the number of propagating modes in each uniform waveguide section, since k; 
corresponds to the propagation modes if k,w,/a z j and the evanescent ones otherwise. 

Matching the wave functions and their derivatives on the boundaries of the regions 
1-5 using a standard match-mode technique, we obtain for the transmission and reflection 
amplitudes 

G = r,,, +a,,,,, (10) [*I - 
r,,, 7 tm = - Cmm,U,,,, , 

Id 
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where ay1 represent the solution of the infinite set of equations (indexes i and j enumerate 
modes in the constrictions) 

4 sinh K,WA sinh K ~ W Z  

SlllhKmW,f k SinhK,,,(Wi -t We) 
SinhKm12k SinhKm(l + W 2 )  

Sinh Kml Sinh Km W2 
'' = a $ =  . 

The symbols e (even) and o (odd) correspond to the summation over even and odd modes; 
when i is even (odd) the upper (lower) value in the curly brackets must be taken. 

Note that analogous equations can be obtained in the tight-binding approach making 
use of the Green function techniques, as was demonstrated previously by Onipko et a1 [26] 
for different waveguide smctures. 

It is worth stressing that the off-diagonal elements of the matrix Gij are comparable in 
magnitude with the diagonal ones. This means that strong mode mixing inside the structure 
occurs. This is in contrast to the case of a single constriction where the diagonal elements 
of the corresponding matrix are dominant and, therefore, mode mixing is weak. 

The transmission probability of the electron entering the device in the pth mode in the 
emitter is given by 

where summation mns over only upon propagating modes in the collector region (evanescent 
modes do not contribute to the current), the maximum propagating mode being determined 
by the integer part of the value kpwl/x. The total transmission through the device 

T ( E ) =  Tp (13) 
P @ropag) 
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is determined by the contributions from all propagating modes available at the energy E of 
incoming electrons in the emitter region. 

We solve equations (10) and (11) numerically, truncating them at a finite number of 
modes, N. Calculations show that inclusion of only N - 5-7 modes in the narrow regions 
(and, correspondingly, - N w l / w z  modes in the wide regions) ensures the desired degree 
of convergence (c 1%) in the energy range of interest The dependence of the transmission 
coefficient on the dimensionIess wave vector k kFwz/n is shown in figure 2. At k = 1, 
when the lowest evanescent mode in the constrictions turns into a propagating one, the 
"&ion exhibits a threshold behaviour, rising from zero to unity. As seen, changing 
the ratio of widths of the wide and narrow waveguides, wl/wz,  does not influence the 
transmission coefficient if W I / W Z  2 3. This ratio of widths is taken in all the calculations 
presented below. We have also calculated the transmission coefficient for the structures 
considered by Berggren and Ii [81 where emitter and collector regions were the mws, and 
we found virtually exact agreement 

pigurr 2 Total transmission as a k t i o n  of the Fermi wave vector for various mtios 
W I J W ~  = 15 (dashed l ie) ,  3. 10 (solid lines, undistinpished in the d e  of the figure). 
The length of the constrictions. the width of the cavity and the length of the sidearms are kept 
equal to the width of the conmictions. 1 = w )  = w4 = WI.  

Two sharp peaks in figure 2 below the propagation threshold for the first (k = 1) and 
the second (k = 2) mode in the conshictions correspond to resonant tunnelling through a 
quasibound state. The dependence of the charge stored in the shuctwe Q = / Jr$P on the 
wave vector k (figure 3), showing a sharp peak at the resonant level, also illustrates the 
existence of a quasibound state in the cavity. In figure 4 a contour plot of the normalized 
square modulus of the wave function Jr@* is shown for the h t  resonance (k N 0.82). 
It is seen that the quasibound state resides at the intersection of the wires and does not 
extend to the side arms. Calculations show that when the length of the constrictions. I ,  and 
the length of sidearms, w4, are greater than the half width of the constrictions, w2/2. (the 
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above parameters are defined in figure I), the positions of both resonance levels Er and E: 
depend neither on the length of the side arms nor on the length of the constrictions. Under 
this condition they reach their asymptotic values corresponding to the case of intersection 
of two infinite perpendicular quantum wires [4]: Er N 0.66Ep and E: N 0.93Et.  where 
E? = h2/(2m*)(z /w,)2 and E t  = h2/(2”)(Zn/w2)* are the propagation threshold energy 
for the first and the second mode correspondingly. The width r of the first resonance is 
also independent of w4 if w4 w2/2 and is determined, besides the threshold energy, 
Eh E?, by the length of the narrow constriction. The dependence of r/E& on 1 exhibits 
an exponential behaviour, see figure 5. This is in a direct analogy with the tunnelling escape 
rate of electrons from a well of a DBRT structure which depends exponentially on the barrier 
width, but is insensitive to the width of the well [27]. 

- I , , , , , , 
i ,  , 

To conclude this section let us stress that all the presented results refer to an idealized 
model of a waveguide with abrupt comers and hard-wall confinement. In real structures a 
split gate defines a rather smooth saddleshaped potential for the zDEG [28]. Our calculations 
for Q m s s  with smoothed comers performed on the basis of the recursive Green function 
technique [29] show that accounting for a more realistic potential can only correct the 
obtained values of the resonance width and the position of a resonant level, and will not 
influence the qualitative conclusions about the dependences of Er and r on the parameters 
of the structure. 

4. Bistability behavior of the I-V, (current-gate voltage) characteristic of the RQWS 

In this section we shall apply the results obtained in the previous sections to study resonant 
transmission through an RQWS of realistic dimensions with charging effects taken into 



Charging effects and bislability in resonant quantum wire smrures 5515 

Figure 4. Canlour plor of the normalized probability density JV inside the stmcture at 
resonance (.+w/n 0.82); 1 = wp = w4 = w. w , / w  = 3. 

s h  0.001 0.01 

0.0001 4 
0.5 1 .U 1.5 

v w 2  
+re 5. Dependence of the width of the resonance on the length of the conshictions; 
w4 = w, = w, WI/W2 = 3. 

account. These effects, as was shown in section 2. are described by the non-linear 
equation (2). which links the current Bowing through the device and the position of the 
resonant level. In lateral sbuctures, in contrast to the conventional vertical DBRT structures, 
the position of the resonant level can be easily controlled by the gate voltage V,. A decrease 
of V, enlarges the width of the constrictions w$ and the width of the cavity by the amount 
2Aw and, at the same time, reduces the length of the constrictions lo  (the length of the 
side arms w: remains unchanged), see figure 1. Thus, the dependence of the conductance 
G = I / V  on the width w2 = wi  + 2Aw (at fixed bias V) corresponds to the I-V, 
characteristic of the RQWS. In the linear regime of electron transport, when charging effects 
are disregarded, this dependence is presented in figure 2. 

In the following analysis of equation (6) let us suppose that the capacitance C is the 
self-capacitance between the cavity and infinity. Assuming for simplicity that charge is 
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concentrated in a sphere of radius R = wz (see figure 4). one has C = 4rctowzt. This is 
a lower estimation which does not account for induction of charges in the metal gates and 
in the n-doped layers of GaAs. Thus, the real capacity is higher than estimated one. The 
value w2 in the definition of the capacity is, therefore, a phenomenological parameter of the 
theory which has to be determined from comparison with experiment. The above estimate, 
nevertheless, appears to be correct up to a factor of the order of unity 1191. 

14 

Figure 6. Conductance G as a function of the width of the ~ ~ ~ V i e t i a ~  w2 (w2 = w: t ZAw) 
cdcuhled on the bads of equation (6). Dashed line corresponds to the linear regime, when no 
clwrging effects are taken into account; k.nw!/n = 0.8. l" = w! = w: = w;. w:/wi = 3. For 
w! = 14 nm solid lines correspond to (left to right) V = 0.01 mV. 0.05 mV. 

In our calculations we choose parameters appropriate for a GaAs structure with ?D 
electron density n. = 5 x l O I 5  w i  = w! = w: = lo = 14 nm, effective mass 
m' = 0.067m, and dielectric constant c = 13. This gives us the threshold energy 
E& = 28 meV, the energy of the quasibound state E, = 19 meV and capacitance 
C = 2 x F. On the basis of the approach of section 3 we have studied the effect of the 
sample geometry on the resonance width and found that r / E h  = 0.005exp(14.6Aw/w,0) 
(or, r = 0.14exp(14.6Aw/w~) mew. Using this in equation (6) we obtain the resonance 
current-gate voltage characteristic of the RQWS, as shown in figure 6. The dotted lines 
in figure 6 correspond to the physically unrealizible solutions of equation (6). thus the 
I-V, characteristic exhibits a hysteresis behaviour. For the given geometry and fixed 
carrier density, the only parameter in equation (7) which determines the condition for 
the bistability to occur is the bias voltage V. For the structure under consideration this 
condition is V 2 0.01 mV. In accordance with equation (9). the greater the bias voltage, 
the greater the range of bistahiity. Varying the applied bias iduences only the range 

t In [19,21] where the radius of the dot rda was much grwer than the width of the IOW in the direction 
of wm%ement, the cappadlance of the device was estimated as the self-capacitance of a disc of radius 
rdor, cda = 86WdoO 
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of bistabiiity and not the maximum current. The latter, for the symmetric structure, is 
always Zm = 2e2/h .  These results apply at zero temperature. For higher temperatures, 
the resonance thermally broadens (r increases); therefore, the parameter a in equation (6) 
decreases and the bistability region is reduced. 

Due to the proximity of the continuous specmm (i.e. kFwz/x > 1) to the quasibound 
level E,", the Lorentzian approximation (2) is justified only for a limited region of kF. This 
limits the use of equation (6) for the description of charging effects in RQWSs: the range 
of bistability must lie within the range where the Lorentzian approximation (2) is justified. 
For example, for the structure under consideration, the approximation (2) is valid when the 
current drop does not exceeds two orders of magnitude, see figure I. 

I 
n 

cy f 
w 

?- 
0 

VI 
2 
S 
3 

W 

c3 

Figure 7. Conductance G as a function of the width of the constrictions lu2 (w2 = to! + 2Aw) 
calculated on the basis of (lOHl3) (no charging effects are taken into account). Dashed line is 
the brentzian approximation, equation (2): lo = w! = w i  = w!. wt/w$ = 3. 

In our model we also neglected the contribution to the current from the electrons 
tunnelling through the depletion regions underneath the gates. This is justified for the 
case when the gate voltage is high enough and w1 is not much greater and I is not much 
smaller than the width of the constriction W Z .  

To conclude, let us stress that in RQWss changing the resonant level by varying the 
gate voltage does not destroy the symmetry of the device, thus full transmission, T = 1, 
can be achieved at resonance. On the other hand, in vertical DBRT structures, effective 
control of the resonant level can he realized only by varying the applied bias. But changing 
the bias inevitably introduces asymmetry in the structure. This drastically reduces the 
total transmission [30]. Therefore, to enhance the resonance and to enlarge the range of 
bistabiity it is necessary to have highly asymmetrical and opaque barriers at zero bias. 
This has a rather unpleasant consequence: one needs a large bias (- 100 mV-1 V) to reach 
resonance in realistic samples. In this case the influence of the absorption and depletion 
regions in the formation of a potential throughout the device cannot be neglected. This 
effect, as well as effects of the biasing circuit, are usually not taken into account in the 
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model Hamiltonian. As a result, the comparison of experimental data with theoretical 
predictions is rather ambiguous. In contrast, in experiments on the conductivity of 2D lateral 
structures, the small bias voltages (- IO mV 01 less) used produce only small corrections 
to the equilibrium distribution in the emitter and collector regions. Therefore. effects of the 
accumulation and depletion layers on the electron transmission through the device are not as 
important as in the case of the DBRT structures. Thii allows one to distinguish more clearly 
the origin of the bistability, and to remove the existing uncertainty in the interpretation of 
experimental data. 

5. Brief summary 

In summary. effects of the space-charge formation in electron transport in RQWS and its 
manifestation in the current-gate voltage characteristic of the device have been investigated. 
The change of the potential profile inside the structure, due to the excess charge stored in 
the dot when the resonant condition holds, is explicitly taken into account. The value of 
the conduction band shift is assumed to be determined by the gain in electrostatic energy 
associated with the charging of the cavity. A closed non-linear equation relating the resonant 
current flowing through the RQWS to the energy of the resonant level (which can be varied 
by changing the applied gate voltage) is derived for the case of the linear-response regime. 
It is shown that the current-gate voltage characteristic of the RQWS exhibits a bistable 
behaviour if the maximum shift of the conduction band in the cavity caused by the excess 
charge exceeds roughly the width of the resonance. The energy region where bistability 
occurs is proportional to the applied bias and inversely proportional to the half width of 
the resonance. The latter is caIcu1ated within the framework of a standard match-mode 
technique using an idealized model of a waveguide with hard-wall confinement and abrupt 
constrictions. The dependence of the resonant width on the device geometry is investigated 
and, on the basis of the above results, the bistability in the I-V, characteristic (current-gate 
voltage) is studied for structures of realistic dimensions. 

Acknowledgments 

I am grateful to Professor E H Hauge for discussions of this work and critical reading 
of the manuscript. I have also benefited from discussions with Professor K A Chao on 
bistability phenomena in resonant tunnelling smctures. Especially I deeply appreciate 
extensive interaction with Professor A I Onipko during all stages of this work. I am pleased 
to acknowledge the support of the Royal Norwegian Council for Scientific and Industrial 
Research (NTNF). 

References 

111 Beenaldcer C W J and van Houten H 1991 SoEd Smte Physics, M v ~ c e s  in Rescnrch a d  Applications VOI 

[21 Kouwenhoven L 1992 Physics of Low-Dinunsionnl Sunicondudor Structures ed P N B u c k  er PI (New 

131 Wharam D A, Thomton T J. Newbury R Pepper M, Ahmed H, Fmst J E F. Halm D G, Peacack D C. 

44. ed H Ehrenreich and D Turnbull D (San Diego: Academic) 

York Plenum) 

Ritchie D A and Jones G A C 1988 1. Phys. C: Solid State Phys. 21 U09 

Foxon c T 1988 Phys. Rev. Len. M) 848 
V a n  Wees B I, van Houten H. B e m a 1  C W 1. Wdliamson 1 G, Kouwenhoven L P, van der Marel D and 



Charging effects and bisfability in resomf quantum wire structures 5519 

S d e r  A and Stone A D 1989 Phys. Rev. Len. 62 300 
Haanapel E C and van der Marel D 1989 Phys. Rev. B 39 5489 
Kinzenov G 1989 Phys. Rev. B 39 10452 

[41 Schult R L, Raveohall D G and Wyld H W 1989 Phys. Rev. B 39 5476 
Peeten F M 1989 Supperkm Micmsfmn. 6 217 

[51 Weisshaar A, Lary I, Goodnick S M and Tripathi V K 1991 IEEE Elecmn Devices Leff. 12 2 
[61 Weisshaar A, Lary I, Owdnick S M and Tripathi V K I991 3. Appl. Phys. 70 355 
[7J Takagaki Y and Ferry D K 1992 Phys. Rev. B 45 13,494 
[SI B w g g m ~  K F and zhen-Li Ji 1991 Phys. Rev. B 43 4760 

Berggren K F. Baev C and B e n - t i  Ji 1992 Phys. Scr. T 42 141 
[9] Davydov A S and Etmabv V N 1987 Physicn 28D 168 

[IO] Sheard F W and Twmbs G A 1988 Appl. Phys. Len. 52 1228 
[Ill Bandm K M S V and Coon D D 1988 AppL Phy. Left. 53 1865 
1121 Kluksdahl N, Kriman A M ,  Ferry D K and Ringhofer C 1989 Phys. Rev. B 39 7720 
[I31 Mains R K, Sun I P and Haddad G I 1989 AppL Phys. Len. 55 371 
[I41 Rahman M and Davies H I 1990 Semirond Sci. Technol. 5 168 
[IS] Malysheva L I and Onipko A I 1992 Phys. Rev. B 46 3906 
1161 Zou N, Willander M. Linnerud I, Hmke U, Chao K A and Galperin Yu M 1994 Phys, Rev. 49 2193 
[I71 Goldman V I, Tsui D C and Cunningham I E 1987 Phys. Rev. Len. 58 125T 1987 Pkys. Rev. Lcrr. 59 1623 

Zaslavsky A, Goldman V I, Tsui D C and Cunningham J E 1988 Appl. Phys. Len. 53 1408 
Alves E S, Eaves L. Henini M. Hughes 0 H, Leadbeater M L, Sheard F W, Toombs G A. Hill G and Pale 

Leadbeafer M L, Alves E S ,  Eaves L, Henini M, Hug- 0 H, Sheard F W and Toombs G A 1988 Semicod 

1181 Scott-Thomas J H F. Held S B, Kasfner M.A. Smith H I and Antoniadis D A 1989 Phys. Rev. Len. 62 583 
Field S B. m e r  M A. Meirav U, Scott-Thomas J H F, Antoniadis D A, Smith H I and Wtnd S 1 1990 

Meirav U, Kastner M A and Wind S J 1990 Phys. Rev. Len 65 771 
[I91 Kouwenhoven L P. van der Vaan N C, Johnson A T, Kool W. Hamans C J P M, Williamson I G, Staring 

[20] van Houfen H and Benakker C W J 1989 Phys. Rev. Len. 63 1893 
Glazman L I and Shekhter R I 1989 3. Phys.: Condens. Mamr 1 5811 
Groshev A. lvanov T and Vdtchinov V 1991 Phys. Rev. Len. 66 1082 

[211 Averin D V. Komtkov N N and Likharev K K 1991 Phys. Rev. B 44 6199 
[22] See for a review Averin D V and Likharev K K 1990 Quantum Eflecu in S m l l  Disordered Syrfems 

ed B Al'fshuler ef a1 (Amsterdam: Elsevier) 
[U] Landauer R 1981 Pkys. Len. 85A 91 

Fisher D S and Lee P A  1981 Phys. Rev. 23 6851 
Landauer R 1989 3. Phys.: Condens. Maner 1 8099 

p41 Landau L D and Lifshitz I M 1974 Quantum Mechunics (Moscow: N a b )  (in Russian) 
Stone A D and Lee P A 1985 Phys. Rev. Left 54 1196 
Price P I  1988 Phys. Rev. B 38 1994 

[251 Bagwell P F and Orlando T P 1989 Phys. Rev. B 40 1456 
[26] Gaididei Yu B, Malysheva L I and Onipko A I 1992 3. Phys.: Condens. Maner 4 7103 

Klimenko Yu A, Malysheva L I and Onipko A I I992 3. Phys.: Condens. Maner 5 5215 
Onipko A I and Zozdenko I V 1993 Semicond Sci. TechnoL 8 2115 

[27] Zou N, R a "  J and Chao K A 1992 Phys. Rev. B 46 15912 
1281 Kumar A, Laux S E and Stem F 1990 Pkys. Rev. B 42 5166 
(291 Fisher D S and Lee P A 1981 Phys. Rev. B 23 6851 
1301 R i a  B and Aibel M 1984 Phys. Rev. B 29 I970 

M A  1988 Elecrmn Len. 24 1190 

Sei. Techol. 3 1060 

Phys. Rev. B 42 3523 

A A M and Foxon C T 1991 Z Phys. B 85 367 


